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The Effect of Repulsive Interactions on 
Bose-Einstein Condensation 
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One-dimensional Bose gases that interact via a repulsive two-body interaction 
and show Bose-Einstein condensation at the free level are studied. It is shown 
that the introduction of this interaction, however small, destroys the condensate. 
It is also shown that the free energy of an interacting Bose gas does not depend 
on the boundary conditions (including attractive boundary conditions) in the van 
der Waals limit. 
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1. I N T R O D U C T I O N  

An open problem in con tempora ry  physics is whether Bose-Einstein con- 
densation, which appears in free Bose gases, (1) persists when an interaction 
is switched on. While mos t  physicists will agree that  it does, no r igorous 
p roof  of  this conjecture yet exists. Only  in certain special eases have partial 
results been obtained. 

(i) A mean field repulsive interaction does not  destroy the 
condensate.  ~-4) The condensate  also persists in the van der Waals limit of  a 
two-body  interaction of  positive type. ~5) 

(ii) If  the Hami l ton ian  of  the free gas has a gap in its spectrum, 
Bose-Einstein condensat ion is stable under  per turbat ion by any integrable 
two-body  potential  of  positive type. ~6) However ,  the in t roduct ion of  a gap 
in this paper  is purely phenomologica!  and is not  mot ivated from first prin- 
ciples. 
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There have been several results, though, on the absence of conden- 
sation. 

(a) Using Bogoliubov's inequality, one can show that a Bose gas 
interacting through a superstable potential and with Neumann or Dirichlet 
boundary conditions at the walls of the container does not show conden- 
sation in one or two dimensions. (7'8) 

(b) Lenard (9'1~ and Schultz (11) have shown that there is no conden- 
sation (even in the generalized sense) in a one-dimensional model of 
bosons with point hard cores and periodic boundary conditions. 

It should be noted, however, that, in both cases (a) and (b) the 
corresponding free model has no condensate either, and therefore the 
absence of condensation is not fully surprising. 

(c) More recently, Buffet and Pul~ (12'13) have shown that, in certain 
one-dimensional models that exhibit condensation at the free level, the con- 
densate can be destroyed by introducing hard core interactions. Their 
results show how unstable Bose-Einstein condensation can be. 

In this paper, similar models are considered when the hard core 
interaction is replaced by a small repulsive interaction. It is shown that, 
both in the case of a one-dimensional Bose system with attractive boun- 
dary conditions or in an external field, the condensate, if defined as in the 
free case, is destroyed by the introduction of the repulsive interaction, 
however small. 

Finally, the free energy of the one-dimensional Bose gas with attractive 
boundary conditions is considered. It is generally expected that the free 
energy of a Bose system with any reasonable interaction does not depend 
on the boundary conditions. This has indeed rigorously been proved (e.g., 
Refs. 14 and 15) at low densities. Recently, Park ~16) has been able to prove 
that the pressure is independent of the boundary conditions in the case of 
interactions that are strongly superstable and this at any density. His 
analysis, however, does not cover the case of attractive boundary con- 
ditions. It should be noted that also in the free model, the mean field 
model, as in the hard core model studied by Buffet and Pul6, (~2) the free 
energy does depend strongly on the boundary conditions when attractive 
boundary conditions are considered. However, it will be shown that the 
conjecture holds in the van der Waals limit of a repulsive two-body poten- 
tial of positive type. It remains an open but interesting question whether 
this result still holds when this limit is not taken. 
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2. THE M O D E L  

Consider a one-dimensional Bose system of N particles in a box 
[0, L], with one-particle Hamiltonian hf having eigenvalues e~ and 
corresponding eigenfunctions f ~  (k = 0, 1, 2,...). The main interest of this 
paper will be the case - 

1 d 2 
h~f = hI;'~ 2 dx  2 

with boundary conditions 

dO ~(x)= -aS(x) for x = 0  and x = L ( a > O )  (1) 

(this corresponds to attractive boundary conditions at x = 0 and repulsive 
boundary conditions at x = L). The eigenfunctions and eigenvalues of h~ -'~ 
are given by 

I 2a ]1/2 e} ""= a2 
f~ '~(x)= 1 - e x ~ - - 2 a L ) J  exp( -ax) ,  2 (2a) 

/ 2 k 112 / n n x  r o'~ n292 
L , a  _ _  L ,  o" s. )' =--L--5- 1) (2b) 

L,o satisfies tan ~L,~ = nn/aL.  where a n 
The proof, presented below, allows one, moreover, to treat one-par- 

ticle Hamiltonians of the form 

h~; - 2 d x  2 [- 

with either Dirichlet or Neumann boundary conditions (V is an external 
potential). 

The appropriate space to describe N bosons in the box [0, L] is 
~ v  = S(L2([0, L]; dx))  | where S is the usual symmetrization operator. 
The free Hamiltonian H~ related to h~ is then defined by 

H~,I,, | . . - | 1 6 2 1 7 4  - .  | 1 6 2  . . - + , / , ,  | ... | hf,/,,,, 

Note that H~ can conveniently be written as 

L * L L _ _  H ~ =  ~ ~ka ( f k ) a ( f k ) - - ~  r L e k U ( f  k ) (3) 
k > ~ O  
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where a*(f) and a(f) are the usual creation and annihilation operators 
and N(f)  = a*(f) a(f). 

Consider a two-body potential U satisfying 

(i) 0~< U(x) < ~ ,  VxeN (4a) 

(ii) 3A>0 ,  3 e > 0  such that Vx~ I - A ,  +A]"  U(x)>~e (4b) 

(iii) f~ dx U(x) < o0 (4c) 

The Hamiltonian of the interacting Hamiltonian is then given by 

H L = H~ + ~ (5a) 

where 

~(x,,..., xu) : ~ V (x , -  x:) 
l < ~ i < j ~ N  

Since s//is a bounded operator [by (4)3, H L has the same domain as Ho L, 
and H~ in (5a) can still be represented in the form (3). (This would not be 
the case if one were to consider hard core interactions.) The state co L is 
defined as 

oL(A) = Tr:e~ A exp( - flH L)/Tr ~ exp( - flH c) (5b) 

One is then interested in the thermodynamic limit L ~ ~ such that 

N 
lim L_. -s P 

It is well known how the free model (q /=  0) behaves in this limit. For 
example, in the case h~f=hrl'~ (denote the corresponding state by c@~ 
there exists a critical density 

1 
-~fl~ )<00 p ~ = ~ g � 8 9  1 2 if a > O  

with 

X n 
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such that 

.< ~. L,O N ( f  ~ "~ (i) if P-~.Po. lira o9 o = 0  
L ~ c o  L 

(ii) if p > p~: lira o9~ '~N(f~'~) 
(6) 

[f~,~ as in (2)]. 

In the next section, it will be shown that if a two-body interaction U 
satisfying (4) is added, then 

lira o9L,~ N(f~ "~ = 0 Vp (7) 
L ~  L 

This shows how unstable this type of condensation is to the introduction of 
any repulsive potential between the particles. 

3. EFFECTS OF AN I N T E R A C T I O N  ON THE C O N D E N S A T E  

The idea of the proof of (7) is simple. Basically, one has to show that if 
(7) did not hold, the energy per particle would diverge when L--0 0% in 
contradiction with the statement of Lemma 1 (see below). 

L e m m a  1. Take b~x)  a C~176 with support in [0, L]  and 
L which is equal to C /x /L  on the interval [ a , L - a ]  for some a and 

decreasing to zero outside this interval, with S L [bL(x)12dx= 1. Assume, 
moreover, 

(i) ~DlSUChthatl(bL, hLlbZ)]<~D 1 VL 

1 
(ii) c~o~lim f~(fl) ~_ L~lim ~ log Trje~ e x p ( - f l H ~ )  

exists for all fl > 0. Then 

OgL(HL) 
lira sup - -  < 

L ~ o v  L 

(8a) 

(8b) 

ProoL Clearly 

fL(fl) =___-~L log T r ~  e x p ( -  flH L) <~ f~(fl) (9) 
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Choose on the other hand ~/~= bL|  ... | b L. We have 

Tr e x p ( - f i l l  L) >>. exp[ _f l(~L IHLI ~L)] 

I N(N-1)(CL)2a ] (10) ~>exp--fl ND 1§ 2L 

+oo where a - - ~ _ ~  dx U(x). 
Since C L ~ 1 and NIL ~ p as L -~ ~ ,  it follows that for L sufficiently 

large, 

--fl(D 1 p "1- p2a/2) - fie <~ fL(fl) .< -L "-~fo(fl) (11) 

Moreover, fZ(o)(fl) are convex functions of ft. The lemma follows, noting 
that 

- ~  HLL - ff--fl fL(fl)>~fL(fi)-fL(fl-5)5 (6 > O) 

and using the bounds (11). | 

In the next proposition, it is shown that this lemma implies that con- 
densation in a large class of functions is excluded. 

Propos i t ion  1. Suppose that conditions (8a)-(8b) of Lemma 1 
hold. Consider a sequence of functions gL with 

f~ lgZ(x)[ 2 dx = 1 

and let 

gL~'(x) = gL(x) ZEo.L~'3(X) 

(Za being the characteristic function of the interval A). Then (i) 

lim foL N(gL'5') ----- 0 '7'(~' < �89 
L ~  L 

(12) 

(ii) If, moreover, 

fx q- A C ste dxlgL(x)[2<. L--- ~ V x ~ [ O , L - A ]  

[A as in (14)3, then (12) holds for any 6' < �89 + ~). 
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ProoL Note that 

• U(x- y) o~r(a*(x) a*(y) a(y) a(x)) 

L N e L~ A rj< f(iA 
>>- dx dy 

i = 1  i--1)A 

• ~oZ(a*(x) a*(y) a(y) a(x)) (13) 

where A and e are as in (4). 
The rest of the proof then consists in finding a lower bound for 

L i =  i 1)A - -  

1 L~'/A 
x ogL(a*(x) a*(y)a(y) a(x))=-L Z 1.  BiL 

as a function of (oL(N(fi, L'6')). This bound would diverge as L + ~ if the 
proposition did not hold. Define g~ by 

g~(x)= gr(x) gt(i_ l)A,iA~(X) 1 <<. i <~ L6'/A 
Then, 

ICoL(a*( gi L) a(g~))l 4 

~< [coZ(a*(g~) a(g~))]2[~or(a*(g L) a(g~))] 2 

<~ 09L(a*(g~) a(g L) a*(g L) a(gC)) 09L(a*(g L) a(g L) a*(g~) a(gL)) (14) 

Moreover, 

ooL(a*(gi L) a(g L) a*(g L) a(g~)) 

= CoL(a*(gi L) a*(g~) a(g L) a(gL)) + Ilg/~rl 2 o~(a*(g L) a(giL)) (15) 

Next, use the basic inequality a2+ b2~> 2ab to obtain 

(i) 09L(a*(gi L) a(giZ)) 

fo dx fc ay giL(x) ~,r(y)coL(a*(x)a(y)) 

<~fodXCoL(a*(x) a(x))fodylg'(y)[ 2 

~<N (16a) 

822/45/1-2-14 
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since S L dx a*(x) a(x) is equal to the number operator N L and ooL(N L) = N. 

(iii) ~o(a*(g L) a*(g~) a(g~) a(giL)) 

s 
<. dx dy coL(a*(x) a*(y) a(y) a(x)) 

(i--1)A (i--1)A 

dz IgL(z)[ 
\ (i-- 1)A 

~<B L (16b) 

Combining (14~(16b) then yields 

L~'/A / La'/A \ 2 

109L(a*(giL) a(gL))[4 <~i~l  BL + pL ) 
i , j= 1 

Note finally that 

which gives 

o r  

A 6 I LO'/A 

L6~ ' ] 2 
i ,j= 1 

n X i  2 ~ ,  
~= <~ n IXil 2 

i 1 i ~ l  

a(gL)) 4 A 6 
ooL(a*(g~) = ~--~ co(N(~L'a')) 4 

La'/A 2 

<.\i~=1 BL+pL)  

A3 
B~ >~ L3--Tar~ [a~L(N(~L'a'))]2--p 

It is then easy to see that, if 

lira sup 
L ~  L 

ogL(N(~,r,a')) 
> 0  

(17) 

(17) 

then 

or, by (13), 

lim sup 1 LY/A 1 
L~oo Z Z BL, = +00 if 6 ' <  5 

i = 1  

CoL(H z) 
lim sup - -  = + 

L ~  L 
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in contradiction with Lemma 1. The second statement of the proposition 
follows by using the bound Ilg~ll2<~d*~/L ~ in (16a)-(16b) instead of the 
bound ]]g~pt2~l as used to prove statement (i). | 

The following corollaries are now immediate consequences of the 
preceding proposition. 

Corollary 1. Consider the case h~ = hC'% Then 

lira coL(N(fLo'r -- 0 Vfi, p > 0 
L ~  t 

The conditions (8) are easily verified to hold. Therefore, by Proposition 1, 

lira c c 0 co ( N ( f  o, Z[O,L6'1))C-I=0, 0~<3 '<~  
L ~ a o  

Using an estimate as in (16a), one verifies that this implies 

lim ~oL(U(fL'~)) L ~=0 | 
L ~ o o  

As mentioned before, this shows how unstable this type of Bose- 
Einstein condensation is. Even if we introduce an interaction as small as 

U ( x ) = 6  if [xl-G<e 

= 0 else 

we destroy the condensation in the level f~,% 
In fact, no condensation in any level should be expected in this case. 

This is shown rigorously in the van der Waals limit in the next section. 
It should be noted that the result of Corollary 1 does not contradict 

the result stated in the introduction, namely that the introduction of a gap 
makes the condensate stable even when a small interaction is introduced3 6) 
Indeed, in that paper, the gap is of a different kind. 

Proposition 1 can also be used to derive results in the case of an exter- 
nal field. Consider h~ of the following form: 

Z (18) 

with Dirichlet (or Neumann) boundary conditions on [0, L] .  

a s  

The eigenfunctions and corresponding eigenvalues of h~ can be written 

L ~ n - a / 2 ( a  + + 2 ) )  

t3L = L -- 2=/(a + 2) gn~L 
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~L the eigenvalues of the operator where )TL are the eigenfunctions and e n 

1 d 2 
h f -  2 d : ~ + x  ~ 

on the interval [0, L 2/~+ 2] with Dirichlet (Neumann) boundary conditions. 
It can be shown that the free model shows condensation in the lowest 

energy level at high densities if e < 2, i.e.., (17) 

N(f~) 
lim (o~ ~ 0 

Note that the length scale for the condensate is L a/(~+2). Using path 
integral techniques, (17) one can get estimates for the behavior of )7,L(x) for 
all x. Using the second statement o Proposition 1, these estimates are then 
sufficient to prove the following corollary. 

Corollary 2. If the case of the one-particle Hamiltonians, we have 

lim ~ Vn<oo, Vfl, p>O | (18) 
L~oo L 

If the potential is sufficiently localizing (i.e., e close to zero), one might 
reasonably expect that there would remain some condensate. However, the 
preceding corollary shows that this condensate will have to sit on a length 
scale bigger than L ~/(~+ 2) 

4. I N D E P E N D E N C E  OF THE FREE ENERGY ON THE 
B O U N D A R Y  C O N D I T I O N  

Consider again the case of the one-dimensional interacting Bose gas 
with attractive boundary conditions [see (1)]. The two-body interaction U 
considered in this section will be assumed to satisfy conditions (4) and to 
be of positive type, i.e., 

U(k) -- f dk exp ikx U(x) >~ 0 Vk e (19) 

The Hamiltonian for the interacting system will be written as 

H f  = + (20) 



Bose-Einstein Condensation 211 

where 

~lA(Xl'""XN)=/~ E U('~(xi--xJ )), /~>0 
l<~i<.j~N 

and where the index G denotes, as before, the boundary conditions (1). 
Let L 0 f #  (p) be the corresponding free energy, i.e., 

1 
fL,o(p) = _ ~ log T r ~  exp - flH L'~ 

#L 

The limit limxt0limL~oo is usually called the van der Waals limit and 
corresponds to a limit of very long-range interactions. 

It is now shown that the free energy no longer depends on a in this 
limit, in sharp contrast to both the free model and the hard core model 
studied by Buffet and Pul6. ~ 

An interesting question is whether this result would also hold without 
taking the van der Waals limit. On physical grounds one expects the 
answer to this question to be yes. However, it is not clear how far the 
example Studied in Ref. 11 contradicts this conjecture. As a side result, it is 
also shown that, in the van der Waals limit, there is not only no conden- 
sation in the ground state (as shown in Proposition 1), but even no con- 
densation in the generalized sense. 

T h e o r e m  1. (i) With the preceding conventions 

lim lim fL,~(p) = f 0 ( P ) +  ap2 ~o  c a  ~ --~-, a = U(0) 

where fo(P) denotes the limiting free energy of the free Bose gas with 
Neumann or Dirichlet boundary conditions. (ii) We have 

lim lim lim 1 ~ co~,~(N(fL,o))=0 
eJ.O 2 1 0  L ~ o o  LoL,~< 

~k ~ ~ 

L,~ and fL,~ where % are as in (2) and where co c,~ is as in (5b). 

ProoL (i) 
H L,~ <~ H L,~ Ycr c 

(the index ~ denotes Dirichlet boundary conditions; this inequality has to 
be understood in the sense of Friedrich extensions). Therefore 

lim sup f Z j ( p )  <~ lim L f~,  (p) (21) 
L ~ c o  L ~ o v  
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If gL(x) is defined as 

1 
gL(x) = --~-~ log T r ~  exp -- fl[xe~,~U(f~ ,~) 

"JV E L,a L,a e k N ( f  k )+~lx] 
k>~l 

a standard argument about convexity leads to 

0 -2 

fL,~(p ) _ gL(O ) >~ --'2-L cSL(N(fL,o) ) 

where 

oSL(A)= Trw~A exp fl ~ ~k 
k ~ > l  

L,o N(f~,o) + x T r ~ e x p - f l  ~k 
k ~ > l  

Using Proposition 1, this becomes 

lim inf f~,~(p)/> lim inf gL(O) 
L ~ o r ~  L ~ o ~  

it is proved in Ref. 18 that V2>0, Furthermore, 
VL > Lo, VN: 

de Smedt  

(22) 

V~>O, 3L o such that 

~//~(Xl,..., XN)>~�89 - e ) N 2 - b 2 N ,  b= U(O) (23) 

implying 

lira inf f~'~(p) 
L ---~ c~ 

/> lim - log Tr~L N exp -- fl a k T - -  b2p 
L ~ o o  = l  

aP2 ""  (24) = f0(P) + -~-  -- o,tp 

The result then follows by combining the bounds (21) and (24) and by tak- 
ing the limit 2 ,~ 0. 

(ii) The proof of this result is now completely analogous to the proof 
in Ref. 5. 
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